翻訳と辞書
Words near each other
・ Conformal bootstrap
・ Conformal coating
・ Conformal connection
・ Conformal cooling channel
・ Conformal cyclic cosmology
・ Conformal dimension
・ Conformal equivalence
・ Conformal family
・ Conformal field theory
・ Conformal film
・ Conformal fuel tank
・ Conformal geometric algebra
・ Conformal geometry
・ Conformal gravity
・ Conformal group
Conformal Killing equation
・ Conformal loop ensemble
・ Conformal map
・ Conformal radius
・ Conformal supergravity
・ Conformal symmetry
・ Conformal vector field
・ Conformal welding
・ Conformally flat manifold
・ Conformance
・ Conformance checking
・ Conformance testing
・ Conformastatic spacetimes
・ Conformation
・ Conformation (dog)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Conformal Killing equation : ウィキペディア英語版
Conformal Killing equation
In conformal geometry, the conformal Killing equation on a manifold of space-dimension ''n'' with metric g describes those vector fields X which preserve g up to scale, i.e.
:\mathcal_g = \lambda g
for some function \lambda (where \mathcal_ is the Lie derivative). Vector fields that satisfy the conformal Killing equation are exactly those vector fields whose flow preserves the conformal structure of the manifold. The name Killing refers to Wilhelm Killing, who first investigated the Killing equation for vector fields that preserve a Riemannian metric.
By taking the trace we find that necessarily \lambda = \frac\mathrmX. Therefore we can write the conformal Killing equation as
:\left(\mathcal_X - \frac\right)g=0.
In abstract indices,
:\nabla_X_ -\fracg_\nabla_X^=0,
where the round brackets denote symmetrization.
For any but 2, there is a finite number of solutions, specifying the conformal symmetry of that space, but in two dimensions, there is an infinity of solutions.
==See also==

*Einstein manifold
* invariant differential operator

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Conformal Killing equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.